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A hybrid "nite element method for computing mid-frequency vibrations is presented. In
the mid-frequency region a system is comprised by some members that contain several
wavelengths and some members that contain a small number of wavelengths within their
dimensions. The former are considered long members and they are modelled by the energy
"nite element analysis (EFEA). The latter are considered short and they are modelled by the
"nite element analysis (FEA). In this paper the excitation is considered to be applied on the
short members. The hybrid formulation computes the response of the entire system. The
characteristics of the long members a!ect the behavior of the short members and the amount
of power #ow between the members of the system. The resonant characteristics of the short
members and the boundary conditions imposed by the long members determine the amount
of input power into the system. The interaction between members is described by a set of
equations between the FEA and the EFEA primary variables at the interfaces between long
and short members. The equations for the short and the long members and the interface
equations are solved simultaneously. A theoretical formulation and a numerical
implementation for systems that contain one wave type is presented. Analytical solutions for
several co-linear beam con"gurations are compared to numerical results produced by the
hybrid "nite element method. Good correlation is observed for all analyses.
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1. INTRODUCTION

The frequency spectrum where simulation methods can be utilized for vibration analysis
can be divided into three regions: low, mid, and high frequency. The low-frequency region is
de"ned as the frequency range where all components are short with respect to a wavelength
(short members). Short members respond with low model density, and resonant e!ects are
dominant. No uncertainties with respect to the natural frequencies or the dimensions of the
short members are considered. Conventional "nite element analysis (FEA) is a practical
numerical approach for simulating low-frequency vibrations [1}3].

The high-frequency region is de"ned as the frequency range where all component
members of a system are long with respect to a wavelength (long members). Statistical
energy analysis (SEA) [4}8], and energy "nite element analysis (EFEA) [9}15] can be used
for vibro-acoustic simulations at high frequencies. SEA is an established approach for
high-frequency analysis. EFEA constitutes a recent development for high-frequency
analysis [9}15]. In EFEA, the primary variable is de"ned as the time- and space-averaged
energy density (energy density). The governing di!erential equations are developed with
respect to the energy density, and a "nite element approach is employed for the numerical
022-460X/00/420181#22 $35.00/0 ( 2000 Academic Press
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solution. Both SEA and EFEA provide meaningful results for the ensemble average
response [16] when all the members in the system have high model density.

The mid-frequency region is de"ned as the frequency range where some of the
components of a system are long and other members are short. In the mid-frequency range,
the FEA method requires a prohibiting large number of elements to perform an analysis due
to the presence of the long members. The formulations of the energy methods (SEA and
EFEA) contain assumptions that are valid when all components of a system have high
model density. Based on the condition of high model density, the SEA formulation
considers the normal modes within a frequency band as equally spaced, containing the same
amount of energy, and demonstrating an equal amount of damping [8]. The condition of
a small wavelength with respect to the dimension of a member in the EFEA is equivalent to
the condition of high model density in SEA. The requirement for small wavelength in the
EFEA allows to neglect near-"eld e!ects in a wave equation during the development of the
governing di!erential equation. Thus, the energy methods cannot capture resonant e!ects
in the behavior of a system in the mid-frequencies. The resonant e!ects are generated from
the presence of the short members.

In the energy methods, the amount of power transferred between members at joint is
de"ned in terms of coupling loss factors (in SEA) or power transfer coe$cients (in EFEA).
Analytical solution of semi-in"nite members are employed for de"ning the power transfer
characteristics of each joint [17]. The computations are meaningful when the members
connected at the joint are long. Then, the power transfer characteristics of the
long members can be considered the same with the power transfer characteristics
of the semi-in"nite members. The requirement for high modal density is necessary because
the information produced by the analytical solutions of the semi-in"nite members captures
the exchange of power #ow between members when there is an equal amount of coupling
between the normal modes of the members. If large di!erences exist in the power #ow
due to the distinct resonant behavior of the short members, then the power transfer
characteristics cannot be identi"ed properly from analytical solutions of semi-in"nite
members. In addition, the behavior of the short members cannot be computed correctly
by the energy methods because of resonant e!ects that are important for the overall
behavior of a short member are neglected in the current form of the energy
methods.

In the past, conventional "nite element models have been employed in order to determine
the SEA coupling loss factors [18}23] or the EFEA power transfer coe$cients [14] instead
of employing analytical solutions of semi-in"nite members. Specially, SEA coupling loss
factors have been computed through "nite element computations for assemblies of fully
connected plates [18, 21], for beam junctions [19], for interfaces between structural and
acoustic subsystems [22], for the sound transmission between walls in a building [20], and
for connections between rods [23]. EFEA power transfer coe$cients have been computed
through "nite element computations for spot-welded connections [14]. The rationale in all
these developments is to employ conventional EFA for capturing the coupling mechanism
when the connection between members presents a complexity that cannot be accounted by
the analytical solutions of semi-in"nite members. The approach of utilizing FEA for
computing the power transfer characteristics is the only computational option for complex
or discontinuous joints, and this approach provides an alternative to evaluating the power
transfer characteristics through testing.

An approach based on creating a statistical Green kernel for a boundary element
formulation for assembled rods and beams in the mid-frequency range has been presented
[24]. The statistical Green kernel is constructed based on random mechanical constants.
The fundamental solution is then considered as a random function. A direct boundary
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element approach is employed to achieve numerical solution. Examples of analyzing
a single rod, two co-linear rods, and a single beam were presented [24].

The concept of combining an FEA and an SEA formulation for developing a hybrid
approach has been presented [25]. The lack of compatibility at the joint between the SEA
variables and the FEA variables became a main issue. An optimization routine was
developed to approximate the compatibility at the joint between the SEA and the FEA
variables. Recently, another hybrid approach based on coupling FEA and SEA methods
has been presented for rod elements [26]. The method was based on utilizing FEA to
compute the low-frequency global modes of a system and SEA to represent the
high-frequency local modes of each subsystem. The low-frequency global modal degrees of
freedom were coupled to the high-frequency local modal degrees of freedom. Assumptions
of weak coupling between local and global degrees of freedom, and rain-on-the-roof type of
excitation were made. Also an implicit assumption was made that it was possible to readily
identify the global and the local modes of a system. The validation was based on an example
of two co-linear rod elements [26].

In a previous work, a fundamentally new formulation was presented for mid-frequency
analysis [27]. It was based on coupling conventional FEA models of short members to
EFEA models of long members. The excitation was considered to be applied on the
long members only. The joints between long and short members were modelled by
combining analytical solutions of semi-in"nite members that represent the long members
to FEA numerical models for the short members. Two sets of data were produced from
the coupling process. The "rst set was comprised of power transfer coe$cients for each
EFEA member at a joint with a short member. The computed power transfer coe$cients
contained the e!ect of the resonant behavior of the short members and the damping that
could be present in the short members. The second set of data was comprised of
relationships between the primary variables of the EFEA model and the primary variables
of the FEA model at a joint between long and short members. A major advantage o!ered
from the wave-based formulation of the EFEA is the distinction between the energy (and
the power) associated with waves travelling towards and away from a joint. At a joint
between a long and a short member only the energy associated with the impinging wave
contributes to the excitation of the short member. Thus, when multiple members are
connected together, e!ects of strong coupling, power re-injection [16], indirect power #ow
[28], and power re-radiation [29] can be captured correctly by the hybrid "nite element
solution.

In this paper, the hybrid "nite element formulation is signi"cantly enhanced in order to
consider the excitation applied on a short member. The coupling equations between long
and short members must account for the excitation applied on a short member. The
resonant and damping characteristics of the short members remain important for the
overall behavior of the system and the response of the short members. The boundary
conditions imposed by the adjacent long members are important for the response of the
short members where the excitation is applied. The amount of power transferred from the
short to the adjacent long members depends on the amount of energy eventually stored in
the long members. For certain external excitation applied on a short member, the amount of
input power in the system depends on the resonant characteristics of the short member and
the boundary conditions imposed by the adjacent long members. In order to address these
issues, a new hybrid FEA formulation for the joints between short and long members is
developed. A system of interface equations between the FEA and EFEA primary variables
is developed for capturing the relationship between the power transferred from the short to
the long members and the energy which is stored within the long members. The interface
equations are developed from compatibility and equilibrium conditions at the joint. An
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iterative solution process is formulated for solving simultaneously the FEA system of
equations, the EFEA system of equations, and the system of interface equations between
short and long members. Theoretical developments and numerical implementation are
presented for systems with one type of energy. Numerical solutions of the new hybrid FEA
formulation are compared successfully to analytical solutions for several systems of
co-linear beams. Good correlation is observed between numerical and analytical results.

2. MATHEMATICAL FORMULATION OF THE HYBRID FINITE ELEMENT ANALYSIS

The primary concept of the hybrid "nite element formulation is to utilize low-frequency
FEA models for deriving energy information for the short members, and to integrate them
with EFEA models representing the long members. Due to the presence of the long
members in the system, the response of all members will remain incoherent inasmuch as the
short members will be subjected to an incoherent excitation at the points where they are
connected to the long members. Previous work has demonstrated how low-frequency
vibro-acoustic models can be analyzed when they are subjected to incoherent excitation
[30, 31]. The EFEA is selected to be coupled with the low-frequency methods because it
constitutes a wave approach for high-frequency solutions and it is based on a spatial
discretization of the system that is being modelled. Thus, it is possible to develop
appropriate interface conditions at the joints between the primary variables of the EFEA
formulation and the primary variables of the FEA formulation since both can be associated
with displacement properties at the joint.

2.1. BACKGROUND ONE EFEA AND HYBRID FEA FORMULATIONS

In EFEA, the energy density and the power #ow constitute the primary variables of the
formulation [9}13]. The energy density and the power #ow are expressed in terms of
a far-"eld displacement solution. One of the bending degree of freedom in a beam will be
considered in this formulation. By time averaging over one period and space averaging over
one wavelength, a relationship can be derived between the time- and space-average energy
density and power #ow, SeT and SqT respectively [13]:

SqT"
!4c2

b
gu

dSeT
dx

, (1)

where g is the hysterisis damping factor, u the radian frequency, and c
b
the phase speed of

bending waves. The time- and space-averaged dissipated power SP
diss

T can be associated to
the corresponding energy density [17],

SP
diss

T"guSeT. (2)

A power balance at the steady state results in [9, 11, 12]
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, (3)

where SQ
in
T"input power. Substituting equations (1) and (2) into equation (3) results in

the governing di!erential equation for the time- and space-averaged energy density,
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where c
g
is the group speed of the bending waves. A "nite element approach is employed for

solving equation (4) numerically, resulting in [32]

[Ee]
i
MeeN

i
"MFeN

i
#MQeN

i
, (5)

where superscript &&e'' indicates element-based quantities, subscript &&i '' indicates the ith
element, MeeN

i
the vector of nodal values for the time- and space-averaged energy density for

the ith element, [Ee]
i
the system matrix for the ith element, MFeN

i
the vector of input power

at the nodal locations of the ith element, and MQeN
i
the vector of power #ow at the boundary

locations of the ith element. In EFEA, the primary variables of the formulation are
associated with energy density. However, the external excitation and the interface
conditions between members are de"ned in terms of power input and power #ow
respectively. In EFEA, the term MQeN

i
provides the mechanism for connecting elements

together across discontinuities [32]. In the hybrid FEA formulation presented in this paper,
MQeN

i
provides the mechanism for prescribing the power #ow from the short to the long

members due to the excitation applied on the short members.
In EFEA, at positions where di!erent members are connected, or at locations of

discontinuities, the energy density is discontinuous. The corresponding boundary between
the elements de"nes a joint location. Therefore, during the assembly of the global system the
element matrices do not couple, and the values of the internal power #ow at the common
node do not overlap to cancel each other. Instead, they remain as variables on the
right-hand side of the equation
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A special procedure is used for assembling the element matrix into the global matrix
equations [32]. A specialized joint element equation is developed to formulate the
connection between the discontinuous primary variables at the joint. The values of the
power #ow at the inter-element nodes corresponding to the two adjacent elements are
expressed in terms of the corresponding energy densities [32],
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H , (7)

where subscript &&c'' indicates the common node between elements &&i '' and &&j '', and [J]i
j
is

the joint matrix expressing the mechanism of power transfer between elements &&i '' and &&j ''.
The coe$cients of the joint matrix are computed by power transfer coe$cients derived from
analytical solutions of semi-in"nite members fully connected to each other, and by taking
into account the continuity of the power #ow across the joint. Introducing equation (7) into
equation (6) results in
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where [JC]i
j
is the matrix comprising the coe$cients of [J]i

j
positioned in the appropriate

locations.
In the mid-frequency range, a system is comprised of both long and short members.

A hybrid FEA formulation has been presented for mid-frequency computations when the
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external excitation is applied on long members of the system [27]. A FEA model for the
short member is coupled with analytical solutions of semi-in"nite members in order to
formulate a hybrid joint. Power transfer coe$cients and relationships between EFEA and
FEA primary variables are computed by the hybrid joint formulation. The EFEA power
transfer coe$cients derived from a hybrid joint contain information about the dissipative
and resonant characteristics of the short member. They are utilized for evaluating the terms
of the joint matrix [JC]i

j
for long members that are connected to short ones. The external

excitation is considered applied on long members and the EFEA solution for the
distribution of the energy density over all the long members is computed. The in#uence of
the short members to the response of the long members is captured due to the derivation of
the power transfer coe$cients from the hybrid joint formulation. From the EFEA solution,
the energy density associated with the waves impinging on the short members is computed.
The relationships between the EFEA and FEA primary variables developed by the hybrid
joint are employed for de"ning the excitation exerted on the short members. Because of the
wave-based approach of the EFEA formulation, the amount of energy associated with the
wave impinging on the short member can be identi"ed from the energy density that
constitutes the primary variable of the EFEA formulation. Only the energy associated with
the impinging wave is employed for de"ning the excitation exerted on a short member.
Thus, it is possible to account for power re-injection and power re-radiation e!ects when
multiple long members are present in the system. The boundary conditions imposed by
multiple long members connected to a short member are treated as incoherent since they
originate from the reverberant "elds that exist within each one of the long members. The
response of the short members is evaluated after the EFEA computation for the long
members has been completed.

2.2. HYBRID FEA FORMULATION FOR EXCITATION APPLIED ON SHORT MEMBERS

In this paper, the excitation is considered to be applied on a short member. The resonant,
damping, and dissipative characteristics of the short members impact their own response as
well as the behavior of the long members. The amount of power #ow from the short to the
adjacent long members and the response of the short members depend on the rigidity of the
long members, the excitation applied on the short members, and the amount of energy
stored in the long members. The amount of input power into a system depends on the
resonant characteristics of the short members and the boundary conditions imposed by the
adjacent long members. The interactions between the members must be taken into account
during the solution process. A special iterative solution scheme is developed in order to
address these considerations. In the new solution process, the behavior of the short and long
members is computed simultaneously. The overall hybrid "nite element formulation can be
divided into two parts, the formulation of the hybrid FEA equations and the solution
process. The former is divided into three stages: (1) The FEA system of equations for the
short members are condensed to the degrees of freedom at the joint locations. The "nal
condensed FEA system of equations includes the e!ect of the external excitation applied on
short members. (2) The EFEA system of equations for the long members is developed. The
power #ow from the short members constitutes the internal power #ow at joints between
short and long members. (3) The joints between the short and long members are considered
to have similar behavior with joints between short and semi-in"nite members. Analytical
solutions of semi-in"nite members are coupled to the FEA models of the short members.
A system of interface equations between the short and long members is formulated through
continuity and equilibrium conditions at the interfaces between the short and long
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members. The second part is comprised of the iterative solution process for the overall
system. The three systems of equations, namely, the condensed FEA, the EFEA, and the
interface equations, are solved simultaneously in order to account for the interactions
between the members. The power #ow from the short to the long members depends on the
energy level in the long members and it is updated within each iteration. The "nal
converged values of power #ow are used for evaluating the energy distribution over all of
the long members. At the same time the response of the short members is computed. It
depends on the external excitation applied on the short members, the characteristics of the
short members, and the boundary conditions imposed on the short members by the
adjacent long members.

A "nite element discretization is utilized for modelling each short members. The equation
of motion can be written in matrix form as

[!u2[M]#iu[C]#[K]] MuN"MRN#MF
I
NN[S¹]MuN"MRN#MF

I
N, (9)

where [M], [C], [K] are the mass, damping, and sti!ness matrix respectively, MuN is
the displacement of vibration, [S¹] the global structural system matrix including the
mass, damping, and sti!ness e!ects, MRN the vector of forces and moments imposed
by external excitation or supports, and MF

I
N the vector of internal forces applied at

the boundaries of the short member by the adjacent long members. Equation (9) can
be partitioned into the degree of freedom at the interfaces with the long members and
the remaining degrees of freedom. Since the current development considers one wave type
in each member, the maximum number of long members connected to a short member
is two. Therefore, the equations of the hybrid joint formulation are presented for the
case of two long members connected to a short member. The FEA method is employed
to model the short members. Several of them can be connected to each other and placed
in between long ones. There is no inherent limitation in extending the developed concept
to members with multiple wave types. Partitioning equation (9) for a short member
results in

C
[S¹

11
] [S¹

12
]

[S¹
21

] [S¹
22

]D G
u
m

du
m

dx

u
n

du
n

dx

Mu
2
N
H"G

0

0

0

0

MR
2
N H#G

F
m

M
m

F
n

M
n

M0N H, (10)

where subscript &&m'' corresponds to the displacement u
m

and its derivative du
m
/dx at the left

joint with a long member, subscript &&n'' corresponds to the displacement u
n

and its
derivative du

n
/dx at the right joint with a long member. F

m
, M

m
, F

n
, M

n
are the internal

forces and moments exerted from the long members on the short members at the two joint
locations, subscript &&1'' corresponds to the FEA degrees of freedom at the joints, subscript
&&2'' corresponds to the remaining FEA degrees of freedom, and MR

2
N the forces and moments

applied by external excitation or supports on the FEA degrees of freedom at any location
other than the joints. From the lower part of equation (10), Mu

2
N can be expressed in terms of
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the FEA degrees of freedom at the joints and then substituted in the upper part. The
condensation operation results in
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is the vector of condensed external forces and moments applied on the short members.
The interaction forces and moments F
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members at the two joints can be expressed in terms of the primary variables of the FEA
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where S
ij

is the entire in the ith row and jth column of matrix [S]. The system of equation
(12) constitutes the foundation for deriving the system of compatibility equations at the
interfaces between the short and long members.

The joints between the short and long members are modelled by analytical solutions of
semi-in"nite members coupled to the FEA model of the short member. The FEA model
includes any damping characteristics present in the short member. Waves are considered to
impinge on the short member from both the left and the right semi-in"nite members.
A far"eld term for an impinging right travelling wave, and both a near and a far"eld term
for a re#ected/transmitted left travelling wave are present in the analytical expression of the
left semi-in"nite member:

=
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m
ekmxm ) e*ut. (13)
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The expression of the right semi-in"nite member contains a far"eld term for an impinging
left travelling wave, and both near and far"eld terms for the re#ected/transmitted right
travelling wave:

=
n
(x

n
, t)"w

n
(x

n
) e*ut"(A

n
e~iknxn#B

n
e~knxn#C

n
e*knxn) e*ut, (14)

where subscripts &&m'' and &&n'' indicate the left and right semi-in"nite members respectively,
A ,B are the amplitudes of far and near"eld components of a right travelling wave,
respectively, and C, D the amplitudes of far and near"eld components of a left travelling
wave. The wave numbers can be obtained by the equations
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where o is the density, S the cross-sectional area, EI the bending rigidity.
The terms A

m
and C

n
are associated with the two impinging waves. Their presence is

important for the iterative solution process because A
m

and C
n
are related to the energy level

in the two long members. The amount of power #ow from a short member to the adjacent
long members depends on the energy level in the long members. As it will be discussed later
in the iterative solution section, the amount of power #ow from the short to the long
members is updated within each iteration by updating from the EFEA solution the terms
A

m
and C

n
that correspond to the impinging waves.

Continuity of displacement and slope and equilibrium of force and moment at the
interfaces between the short and long members are expressed in terms of the displacements
and the slopes at the two ends of the short beam, u

m
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m
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coe$cients of the semi-in"nite members A
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. The continuity

conditions for the displacement and the slope, and the equilibrium of force and moment at
the joints between the short and the semi-in"nite members result in a system of eight
equations between the primary variables of the FEA formulation, u

m
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m
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n
and du

n
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and the coe$cients of the analytical wave expressions of the semi-in"nite members. The
system of equations can be expressed in matrix form as
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The four FEA variables at the interfaces and the four coe$cients associated with the
re#ected/transmitted waves constitute the unknown variables. The condensed external
forces of the FEA formulation and the coe$cients associated with the impinging waves
constitute the excitation. The impinging waves are related directly to the energy stored in
the long members. By solving the system of equation (17), each one of the eight unknowns
can be computed in terms of the amplitudes of the impinging waves A

m
and C

n
, and the

external excitation applied on the short beam.
The coe$cients C

m
and A

n
are related to the far"eld re#ected/transmitted waves. The

amount of far"eld power #owing from the short to the left (q
m
) and right (q

n
) long members

is associated with both the impinging waves and the far"eld re#ected/transmitted waves and
can be computed from A

m
, C

m
and A

n
, C

n
respectively.
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Right travelling power #ow is de"ned as positive. Because q
m

is a left travelling power, the
minus sign outside the parenthesis makes q

m
a positive quantity. Once q

m
and q

n
are

evaluated, they can be used to de"ne the internal power #ow at the interface nodes of the
long members with the short ones in the EFEA system of equations. In order to expedite the
computations, a unit power input is considered to be applied at the joint of each long
member with a short member and the resulting energy densities at the joint are computed

once (e
m

for the left member, e
n

for the right member). Equation (6) is employed for
computing the EFEA solution for each long member. Then the energy densities
corresponding to the power #ow q

m
and q

n
that is computed from equation (18) can be

evaluated:

e
m
"e

m
q
m
, e

n
"e

n
q
n
. (19)

In this manner, the EFEA systems of equations for the long member need to be solved only
once within the iterative solution process.

The energy density of the long members at the interfaces between the short and long
members e

m
and e

n
are used to calculate the energy density e`

m
and e~

n
associated with the

waves impinging at the joint. The energy density at the edge of the left long member at the
joint can be written as

e
m
"e`

m
#e~

m
. (20)

The corresponding power #ow is
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m
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m
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gm
S
m
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m
), (21)
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where q`
m

and q~
m

are the absolute values of power #ow associated with the right and left
travelling waves in the left long member at the joint location, c

gm
is the group speed of left

long member m and S
m

the cross-sectional area of long member m. The reason for the
presence of the minus sign outside the parenthesis is the same as in the "rst equation of
equation (18).

By solving equations (20) and (21), an expression can be obtained for e`
m
:
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Similarly, e~
n

is expressed in terms of e
n
and q

n
, or e

n
and q

n
:
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The values for e
m

and e
n
are from equation (19). The values for q

m
and q

n
are the internal

power #ow boundary conditions that are imposed as excitation on the EFEA system of
equations. The energy density e`

m
of the impinging wave from the left semi-in"nite member

is related to the amplitude of the right travelling wave by the equation

e`
m
"1

2
o
m
u2 DA

m
D2. (24)

In a similar manner, the energy density e~
n

of the impinging wave from the right
semi-in"nite member is related to the amplitude of the left travelling wave by the equation

e~
n
"1

2
o
n
u2 DC

n
D2. (25)

DA
m
D and DC

n
D are calculated by equations (24) and (25) and constitute the updated

amplitudes of the waves impinging from the two semi-in"nite members within each
iteration.

In the hybrid "nite element formulation presented in this paper, three sets of equations
have been developed: (1) FEA system for the short members, equation (12); (2)
a relationship between power input from short to long members and the corresponding
energy density at the joint, equation (19); (3) system of compatibility equations at the
interfaces between short and long members, equation (17). These three systems of equations
describe the behavior of each member and the interaction between the members. When the
excitation is applied on a short member the amount of power #ow to the adjacent long
members depends on the characteristics of the short and the long members, the external
excitation, the response of the short member, and the energy level in the long members. The
energy level in the long members in turn depends on the amount of power #ow from the
short to the long members. The input power in the system depends on the resonant
characteristics of the short member and the boundary conditions applied by the adjacent
long members. Thus, the three sets of equations must be solved simultaneously and an
iterative solution process has been developed.

At the beginning of the iterative solution initial values of DA
m
D and DC

n
D are de"ned. A

m
and

C
m

represent the impinging waves from the long members. Two separate loops are
developed for varying the phase angles associated with A

m
and C

n
in order to account for

a large number of possible phase combinations. Introducing variation in the phase of the
impinging waves is necessary in order to simulate the incoherent nature of the excitation
applied by the long members on the short. One of the exterior excitation forces applied on
the short member is considered to have the zero reference phase. The phase angles of A

m
and

C
n
(/

Am
and /

Cn
) vary between zero to 2p at a constant increment separately. The FEA
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primary variables u
m
, du

m
/dx, u

n
, du

n
/dx at the joints, and the unknown wave coe$cients

C
m
, D

m
, A

n
, B

n
associated with the re#ected/transmitted waves in the long members are

computed by equation (26). Solutions to equation (26) are computed for each speci"c pair of
/
Am

and /
Cn
. The total input power into the system and the power #ow from the short to the

long members q
m

and q
n
are evaluated at the completion of the loops associated with the

variation of the phase. The computations are based on energy-based summations since the
behavior of the long members is considered to be incoherent.

The energy density of the long members at the joints is evaluated from the values of the
internal power #ow at the joints q

m
and q

n
, equation (19). The response, the resonant, and

the damping characteristics of the short members determine the power #ow to the long
members and a!ect the distribution of the energy density on the long members. The
distribution of the energy density over all of the long members is evaluated. Equations
(22)}(25) are employed for computing amplitudes DA

m
D and DC

n
D of the waves impinging from

the long members to the short at the joint locations. The new values are compared with the
old ones for convergence. The iterative process continues until the convergence criterion is
satis"ed. During the iterative process only the interface FEA degrees of freedom are
evaluated within each iteration. For computational e$ciency, the entire response of the
short and the long members is computed only after convergence has been achieved. For
each phase combination (/

Am
and /

Cn
) of the impinging waves the converged values of

DA
m
D, DC

n
D, u

m
, du

m
/dx, u

n
, du

n
/dx are utilized along with equations (10), (12) and (17) to

compute the behavior of the short members. The response of the short members is the result
of the external excitation applied on them and the incoherent boundary conditions applied
by the adjacent long members. The behavior of the short members is computed by adding
Figure 1. Flow chart of the iterative solution process.
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on an energy basis the response of the short members computed at each phase combination
of impinging waves. Figure 1 presents a #ow chart of the iterative solution process.

3. VALIDATION

The validity of the basic research presented in this paper is demonstrated by computing
the #exural energy of several systems comprised by long and short co-linear beam members
and comparing the numerical results to analytical solutions. Some beams contain six or
more #exural wavelengths and constitute long members while other beams contain
a smaller number of wavelengths and constitute short members. Two main con"gurations
(Table 1) of a three-beam systems (Figure 2) are analyzed. The three-beam system is
comprised of two long beams inter-connected by a short one. Free end boundary conditions
are considered for the two ends of the long beams that are not attached to the short
members. Excitation is applied on the short beam. In some analyses, the excitation is
applied at the center of the short beam and the results are expected to be symmetric with
respect to the center of the system. In other cases, two excitation forces with 1803 phase
di!erence are applied on the short member. This type of excitation is employed for
demonstrating that hybrid method can account for phase relationships of multiple
excitations applied on a short member. The hybrid results are compared to analytical
solutions. A solution obtained by the EFEA method is also presented in the results in order
to demonstrate the inability of a high-frequency formulation to perform computations in
the mid-frequency range. In the analytical and in the hybrid solutions the external force is
prescribed as excitation. In the EFEA the driving point admittance is utilized to de"ne an
approximate power input into the system. Utilization of the driving point admittance is
a typical approach for de"ning the excitation in energy methods [8].
TABLE 1

Properties of beams employed in the validation

Long beam Short beam

Young's modulus of elasticity E (N/m2) 19)5]1010 19)5]1010
Moment of inertia I (m4) 9)365]10~10 5)853]10~11
Mass density o (kg/m3) 7,700 7,700
Damping factor g 0)02 0)02
Cross-sectional area A (m2) 1)935]10~4 0)4839]10~4
Cross-sectional dimensions width]height (m) 0)0254]0)00762 0)0127]0)00381
Length of members (m) System 1 3 1

System 2 6 1

Figure 2. Three-beam assembly utilized in the validation.
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In order to simulate the ensemble average behavior of the long members in the analytical
solution, a 4% variation is introduced in the length of the long members [33]. The ensemble
of systems incorporates all the e!ects of uncertainty associated with the long members but it
is de"ned for a speci"c frequency [16]. In the validation presented here it is preferred to
introduce the uncertainty associated with the long members through an ensemble of
systems rather than frequency averaging in order to better demonstrate in the solution the
highly resonant e!ects of the short member. The cross-sectional properties of the long and
the short members are the same with the values used in previous validation studies [27] and
they are also summarized in Table 1. In the selected con"guration, the short member has
lower bending rigidity than the long members. Therefore, it is expected that the behavior of
the short member will depend strongly on the response of the long members. The selected
bending rigidities will test the hybrid formulation for capturing properly the interaction
between long and short members. The selected con"gurations also demonstrate that the
characterization of a member as long or short depends on both the bending rigidity and its
length. In the con"gurations selected for the validation the wavelength in the short member
is smaller than the wavelength in the long members; however, the lengths of the beams
become the determining factor of quantifying them as long or short.

3.1. ANALYSIS OF CO-LINEAR BEAM SYSTEMS

Results computed by the hybrid FEA method for System 1 are compared with analytical
solutions (see Appendix A) and the EFEA. Analysis is "rst performed in the frequency range
440}605 Hz. An external excitation force equal to 1 N is the same for the analytical and the
hybrid FEA. The corresponding input power for the EFEA is computed form the driving
point admittance. Results for the total energy in the system are presented in Figure 3(a). The
same force is speci"ed as excitation; therefore, it is expected for the analytical and the hybrid
solutions to demonstrate the same amount of total energy at each frequency, since the total
energy of the system is proportional to the input power. The good agreement between the
two solutions observed in Figure 3 validates that the hybrid FEA captures correctly the
input power for a certain external excitation, the power balance between members, and the
modeling of energy dissipation. The EFEA results are typical of high-frequency solutions
since they cannot capture the variation of input power due to the resonant characteristics of
the system. The averaged energy density for one of the long and short members are
presented in Figure 3(b) and Figure 3(c), respectively. Since the system and the excitation are
symmetric, the response of the two long members is exactly the same, as expected, and
results are presented for only one of two long members. There is good agreement between
the hybrid and the analytical solutions for all the members throughout the frequency range.
The resonant characteristics of the system are accounted and the magnitude of the response
correlates well at all frequencies. Results for the distribution of the space-averaged energy
density over each member are presented in Figure 4 for the resonant frequency of 495 Hz.
The hybrid formulation captures correctly the power transfer mechanism between members
since it accounts properly for resonant e!ects, energy dissipation, power balance and power
re-injection. The good correlation observed between the hybrid and the analytical solutions
for System 1 demonstrates that the system of coupling equations between the long and short
members calculates properly the amount of input power corresponding to the excitation
applied on the short member. Finally, the iterative solution scheme that accounts for the
relationship between power #ow from short to long members and energy stored in the long
members is also validated by the correlation.



Figure 3. Analytical, hybrid, and EFEA results for System 1, 440}605 Hz: ***, analytical; - - -, hybrid;
- ) - ) - ) -, EFEA. (a) Total energy for the system; (b) space-averaged energy density for the left long beam; (c) space-
averaged energy density for the short beam.
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In order to demonstrate that the hybrid solution can account for relative phase
information between multiple excitations applied on a short member the excitation applied
on the short beam is altered. Two forces of 1 N each are applied at locations one-third
length away from the edges of the short member. The two forces have 1803 phase di!erence.
An analytical solution is computed and results are compared with the hybrid FEA.
A high-frequency EFEA solution is also presented with input power determined from the
driving point admittance. Results for the total energy in the system are presented in Figure
5(a) over the frequency range 560}760 Hz. Good correlation is observed for the total energy
stored in the system and the external power input. Resonant behavior is observed at
di!erent frequencies compared with Figure 3(a) because the non-symmetric modes are
primarily excited this time. Results for the averaged energy density for the left long and the
short members are presented in Figure 5(b) and 5(c) respectively. The distribution of the
space-averaged energy density over each member for the resonant frequency of 642 Hz is
presented in Figure 6. Good correlation between the analytical and hybrid solutions is
observed in all the results. As expected, the high-frequency solution provided by the EFEA
severely underpredicts the resonant response of the system, since the input power is
approximated by the driving point admittance of in"nite members [8, 22].



Figure 4. Analytical, hybrid, and EFEA results for the space-averaged energy density in System 1, 495 Hz:
***, analytical; ----, hybrid; - ) - ) - ) -, EFEA.

Figure 5. Analytical, hybrid, and EFEA results for System 1 with altered excitation, 560}760 Hz: ***,
analytical; ----, hybrid; - ) - ) - ) -, EFEA. (a) Total energy for the system; (b) space-averaged energy density for the
left long beam; (c) space-averaged energy density for the short beam.
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Figure 6. Analytical, hybrid, and EFEA results for the space-averaged energy density in System 1 with altered
excitation, 642 Hz: ***, analytical; ----, hybrid; - ) - ) - ) -, EFEA.
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Hybrid and analytical solutions for System 2 are presented in a manner similar to System
1. The good correlation between the two solutions is retained. Compared with System 1, the
long members in System 2 are extended from 3 to 6 m. The modi"cation in the length alters
the boundary conditions between the three members. The total energy in the system is
presented in Figure 7(a) for the frequency range 440}605 Hz. The results between the
analytical and the hybrid FEA solutions correlate well. The EFEA underpredicts the
amount of input power in the system. The hybrid results for the two long members are
identical, as expected, due to symmetry. The averaged energy density for one of the long
members and the short member are presented in Figure 7(b) and 7(c) respectively. Results
for the distribution of the space-averaged energy density over each member are presented in
Figure 8 for the resonant frequency of 495 Hz. The good correlation between the hybrid and
the analytical solutions validates that the hybrid formulation captures correctly the input
power and the power transfer mechanism between the three members in the system.

The presence of the long members in the system in#uences the results in two ways; by
imposing certain rigidity boundary conditions and by limiting the amount of power #ow
from the short member to the long members. The latter occurs due to the waves re#ected
from the boundaries of the long member that impinge back on the joint (power re-injection).
In order to demonstrate the in#uence of power re-injection in the behavior of the system
results for System 2 are compared with an analytical solution of the short member
connected to two semi-in"nite members. It is demonstrated that if the long members are
represented as semi-in"nite, the power re-injection e!ect is eliminated and error is
introduced in the response of the short member. The same external force is applied on the
two systems. Results for the averaged energy density in the short member are presented in
Figure 9(a) for the frequency range 440}605 Hz. The amount of energy computed by the
hybrid solution is consistently higher than the amount of energy predicted by the
semi-in"nite solution. This is expected since in reality power is reinjected back to the short
member from the long members. Power re-injection is captured correctly by the hybrid
FEA. Results for the distribution of the space-averaged energy density over each member
are presented in Figure 9(b) for the resonant frequency of 495 Hz. It can be seen that if



Figure 7. Analytical, hybrid, and EFEA results for System 2, 440}605 Hz: ***, analytical; ----, hybrid;
- ) - ) - ) -, EFEA. (a) Total energy for the system; (b) space-averaged energy density for the left long beam;
(c) space-averaged energy density for the short beam.

Figure 8. Analytical, hybrid, and EFEA results for the space-averaged energy density in System 2, 495 Hz:
***, analytical; ----, hybrid; - ) - ) - ) -, EFEA.
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Figure 9. Analytical, and hybrid results for the space-averaged energy density in the semi-in"nite solution and
System 2: ***, semi-in"nite solution; ----, System 2. (a) The short beam, 440}605 Hz; (b) the whole system,
495 Hz.
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semi-in"nite beam models are used to represent the long beams in the system, the results for
the short and long beams will deteriorate. Therefore, approximating the long members as
semi-in"nite does not provide reliable results even in situations where the long members
contain a large number of wavelengths as in the case of System 2 (approximately 16
wavelengths).

4. CONCLUSIONS

The development of a hybrid "nite element formulation suitable for mid-frequency
vibration simulations of systems with one energy type is presented. The excitation is
considered to be applied on a short member. A system of interface equations is developed
for the joints between long and short members. The EFEA system of equations for the long
members, the FEA system of equations for the short members, and the interface equations
are solved simultaneously through an iterative but computationally e$cient process.
Several systems of co-linear beams are utilized for validation because simple analytical
solutions can be readily available. From the results it is evident that the hybrid FEA method
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developed in this work captures correctly the energy in the short members, the overall
response of the system, the relationship between power #ow and stored energy, and the
resonant e!ects of the short members. The hybrid FEA o!ers a signi"cant improvement
over a high frequency solution because it computes accurately the amount of input power
for a certain external excitation. The consistently good correlation between the hybrid
solution and the analytical results for several con"gurations and over extended frequency
ranges demonstrates the proper development and implementation of the coupling between
EFEA and FEA solutions and the overall validity of the hybrid FEA formulation. During
the theoretical development no assumptions are made that would prohibit the extension of
this work to members with multiple types of waves or to members connected at arbitrary
angles.
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APPENDIX A: ANALYTICAL SOLUTION

The analytical solution for systems of co-linear beams is computed by a MATLAB code.
First the displacement solutions for each beam are considered:
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where subscripts &&l '' and &&s'' are associated with the long and short members respectively,
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near-"eld wave, C
l
the amplitude of the left travelling far "eld wave, D
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the amplitude of the

left travelling near"eld wave, k
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the complex #exural wave number of the long member,
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are the corresponding expressions

for a short member. A separate reference system is utilized for each member. The origin is
positioned at the left end of each member. The power #ow and energy density in the long
and the short members are expressed in terms of the corresponding analytical displacement
solutions.

Power #ow in a beam is transmitted by shear and moment mechanisms. The time-
averaged power associated with the shear force and the moment is
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The total energy density in a transversely vibrating beam is the sum of its potential energy
density< and kinetic energy density ¹. The time-average total energy density solutions for
the long and the short members are
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H for a long member, (A.5)
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Substitution of the displacement solution (equations (A.1) and (A.2)) into equations (A.5)
and (A.6) allows to express the time-averaged energy density as
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Finally, the energy density Se
l
T and Se

s
T are spaced-averaged over one wavelength to

obtain the analytical expressions for the time- and space-averaged energy density Se
l
T and

Se
s
T in the long and the short members respectively.
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